聚酰胺树脂,英文名称为polyamide,简称PA。俗称尼龙(Nylon),它是大分子主链重复单元中含有酰胺基团的高聚物的总称。为五大工程塑料中产量较大、品种较多、用途较广的品种。尼龙中的主要品种是尼龙6和尼龙66,占主导地位,尼龙6为聚己内酰胺,而尼龙66为聚己二酸己二胺,尼龙66比尼龙6要硬l2%;其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010、尼龙46、尼龙7、尼龙9、尼龙13,新品种有尼龙6I、尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品。
PA66 FR15 性能 : PA66 聚酰胺66或尼龙66化学和物理特性PA66在聚酰胺材料中有较高的熔点。它是一种半晶体-晶体材料。PA66在较高温度也能保持较强的强度和刚度。在产品设计时,一定要考虑吸湿性对几何稳定性的影响。为了提高PA66的机械特性,经常加入各种各样的改性剂。玻璃就是较常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。 PA66的粘性较低,因此流动性很好(但不如PA6)。这个性质可以用来加工很薄的元件。 它的粘度对温度变化很敏感。PA66的收缩率在1%~2%之间,加入玻璃纤维添加剂可以将收缩率降低到0.2%~1% 。收缩率在流程方向和与流程方向相垂直方向上的相异是较大的。 PA66对许多溶剂具有抗溶性,但对酸和其它一些氯化剂的抵抗力较弱。
PA66 FR15 工艺条件 : 干燥处理:如果加工前材料是密封的,那么就没有必要干燥。然而,如果储存容器被打开,那么建议在85℃的热空气中干燥处理。如果湿度大于0.2%,还需要进行105℃,12小时的真空干燥。 熔化温度:260~290℃。对玻璃添加剂的产品为275~280℃。熔化温度应避免高300℃。
模具温度:建议80℃。模具温度将影响结晶度,而结晶度将影响产品的物理特性。对于薄壁塑件,如果使用低于40℃的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。 注射压力:通常在750~1250bar,取决于材料和产品设计。 注射速度:高速(对于增强型材料应稍低一些)。 流道和浇口:由于PA66的凝固时间很短,因此浇口的位置非常重要。浇口孔径不要小于0.5t(这里t为塑件厚度)。如果使用热流道,浇口尺寸应比使用常规流道小一些,因为热流道能够帮助阻止材料过早凝固。如果用潜入式浇口,浇口的小直径应当是0.75mm。典型用途 PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。 透明或不透明乳白色结晶形聚合物,具有可塑性。密度1.15g/cm3。熔点252℃。脆化温度-30℃。热分解温度大于350℃。 连续耐热80-120℃,平衡吸水率2.5%。能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀。
PA66 FR15 特性 :1、具有优良的耐磨性、自润滑性,机械强度较高。但吸水性较大,因而尺寸稳定性较差 2、PA66在较高温度也能保持较强的强度和刚度。PA66在成型后仍然具有吸湿性,其程度主要取决于材料的组成、壁厚以及环境条件。
随着汽车产业的快速发展,尤其是近些年新能源汽车(包含混合动力、纯电动以及氢能源)的迅猛发展,汽车行业对于汽车零部件的轻量化、集成化、小型化以及电气化的需求也与日俱增。塑料作为汽车领域必不可少的材料,其工艺、性能要求越来越成为大家的关注点。同时对材料供应商的研发能力、快速响应能力也提出更高的要求。
PA66 FR15 新闻 涡轮增压发动机小型化对材料耐高温的要求
内燃机的*发展趋势是小型化加进气增压(即涡轮高增压)。这两项技术带来的巨大好处是:燃油的消耗量大幅减少,发动机动力增加,发动机总质量减轻等等。例如:以前的发动机进气歧管的两片式结构设计改成了集成中冷器的进气歧管。
这种设计对材料的耐高温、高强度方面提出了更高的要求。需要长期耐受190℃和230℃的高温,并且具有优异的强度。
电气化对材料低析出及电中性的要求
随着更多的传感器已经被布置在汽车整车的各个位置,电气化集成不断提高,同时这些电气化设备对于材料的要求也比以往都更加苛刻,如低析出(不得堵塞毛细结构的油路)、电中性(不得造成电路的短路)、材料需要符合相关法规要求(不得含有禁用物质)等。
聚酰胺(尼龙)材料以其优异的力学强度和长期耐热性能被广泛使用汽车工业中。其耐热性与耐热稳定剂相关。常见的耐热稳定剂有金属盐类(如:碘化铜/卤化铜,金属硬脂酸盐等)和芳香胺类(如:苯胺类物质等)。随着环保意识的增强,其中一些耐热稳定剂因其副作用而被相关法规禁用,例如:*的欧盟法规对含N,N'-二苯基对苯二胺(DPPD)类物质进行严格管控。
DPPD的密度是1.22 g/cm3,熔点约130℃ ,灰色粉末,溶于苯和乙醇 ,不溶于汽油和水; 作为一种抗氧化剂、长期耐热稳定剂一般与其它抗氧化剂混合使用,被广泛应用在橡塑产品中。其中CLP-欧盟物质和混合物的分类、标签和包装法规将DPPD分类为对皮肤敏感物物质;目前根据相关研究表明, NDPPD在人体内经代谢作用可转化成β-萘胺,β-萘胺可引起膀胱癌等癌症的致癌作用,因而被管控及限制使用。
根据法规以及市场的迫切需求,有些工程塑料公司生产了不含DPPD的PA材料。
新能源汽车对材料阻燃性能的要求
随着新能源汽车(含混合动力,纯电动和氢能源)的快速发展,该领域的零部件及材料的相关标准也在快速的细化,例如,对不同阻燃体系的要求,阻燃体系涵盖大致5种,即: 卤素阻燃,氮系阻燃,无机物阻燃,磷系阻燃以及氮-磷协同阻燃;其中,从阻燃机理上又分为气相阻燃和腐蚀性”碳化”阻燃, 如红磷,无机物阻燃等。
不同的阻燃体系阻燃效果各异,同时对材料的物性(如密度,刚性,韧性)都有明显的改变。那么*选择阻燃体系,以匹配零部件对材料阻燃效果,力学强度的要求,是一个非常复杂但又必须解决的问题。
新能源汽车对材料热老化稳定性的要求
在新能源汽车的高压部件,根据法规要求,需要使用高亮橙色料,以标记该相关部件为高压区域。高压区域的部件在连通电流后,往往会持续发热,因此,大部分整车厂对橙色料还提出相关热老化稳定性要求,如:90℃+1000h热老化后,RAL2003的颜*变不得超出RAL2008, RAL2009等更深的橙色。
在未来汽车行业,轻量化减重、电气化、传动效率高效化、涡轮增压发动机的小型化必将作为一个整体,成为绝大多数集成化程度更高的汽车零部件的开发及验证考量的指标。材料厂商也需积极响应市场,提高材料性能,以满足汽车行业的新要求。